Geophysical Exploration for Gold: A Major Company Perspective

Barry Bourne
PDAC 2011
Geophysics Session
Toronto – March 8th, 2011
Overview

- Introduction
- Geophysics team
- Gold model types
- Examples
- Conclusions
Barrick Snapshot

- Leading gold producer
- Largest reserves (139.8 Moz)
- 2010 production
 - 7.8 Moz Au @ $457/oz
- 26 mines & 20,000+ people
- Strong financial position
- Deep project pipeline
 - Cortez Hills, Pueblo Viejo, Pascua-Lama, etc

- Mine
- Project
Exploration Overview

- Team of 294
- 130 geoscientists (8.5* geophysicists)
- 10 exploration offices
- ~60 exploration projects
- 12 countries
- highly endowed districts

Main Exploration Areas

- Nevada
- N Peru
- Central Chile
- Lake Victoria
- PNG
- South Australia

> 20Moz Au
> 5Moz Au

Geophysicists
Geophysical Overview

- Geophysical Team (8 Staff, 1 Part Time):
 - Average age 34
 - Strong in geology (2 geology degrees)
 - Mostly have honours or equivalent (7/9)
 - Graduate program (2 recruited after honours)
 - 14 vacation students over the past 10 years
 - Based in regional offices for maximum impact

- University/Research Support
 - Directly supported 8 Honours and 1 PhD in the last 10 years. **Currently 3 MSc. projects.**
 - 4 honours students now staff geophysicists
 - 1 honours student now mine exploration geo.
 - **KEGS Student fund**
 - ASEG Research Foundation
 - Curtin University of Technology (CUT)
 - Centre for Exploration Technology (CET)
 - University of Western Australia (UWA)
 - **University of British Columbia (UBC)**
 - University of Utah
 - Montana Tech. Dept of Geophysical Engineering
 - Industry Lead CRC / AMIRA
 - **Canada Mining Innovation Council Exploration Initiative**
Targeting the Best Models

- Preferred target types:
 - High deposit abundance
 - Highest % of population >10 Moz deposits
 - Good economics and mineability

- **Greenstone**
 - >10 Moz: 28% (Hollinger, Homestake)
 - >3 Moz: 36% (Grasberg, Reko Diq)

- **Porphyry Cu-Au**
 - >10 Moz: 30% (Yanacocha, Rosia Montana)
 - >3 Moz: 4% (Round Mountain, Porgera)

- **HS Epithermal**
 - >10 Moz: 4% (Round Mountain, Porgera)
 - >3 Moz: 29% (Muruntau)

- **Carlin**
 - >10 Moz: 45% (Goldstrike)
 - >3 Moz: 10% (La Ronde)

- 468 deposits >3 Moz
Carlin – Hardrock Seismic

- **Geology**
 - Carbonate stratigraphy
 - Low-angle architecture
 - Thrusting and stacking
 - *Au in antiform structure*

- **Petrophysics**
 - Density & velocity contrast between
 - lithologies
 - deposition facies
 - structure

- **Hardrock Seismic**
 - Acquisition:
 - High resolution & frequency
 - 10m receiver, 20m shot
 - At least 120 fold
 - 3D acquisition in 2011
 - Processing:
 - Statics corrections for topography
 - Huge velocity contrasts in near-surface
Carlin – Seismic Example

Brute stack

- Intrusive
- Thrust Fault
- Allochthonous Upper Plate
 - Few good seismic reflectors

1500ft
Greenstone – Airborne EM

- **Geology**
 - Greenstone stratigraphy
 - Sediment hosted sulphide-rich end member
 - Near volcanic sequence or porphyry
 - *Au associated with sulphides*

- **Petrophysics**
 - Resistivity contrasts
 - Disseminated sulphides
 - More resistive host
 - Density, magnetic contrasts (in strat.)

- **Airborne EM**
 - Acquisition:
 - High resolution (50/100m line spaced)
 - Target late time conductive responses
 - Processing:
 - Channel amplitude maps
 - 1D transforms and inversions routine

VTEM system
Greenstone – Airborne EM Example

- Helicopter time domain VTEM surveys
- Late time channel data (8.9 ms) shown
- Draped over greyscale magnetics (RTP 1VD)
- Tusker 4.54 Moz @ 1.5g/t Au (2009)
- Killimani anomaly identified as another sulphide response
Killimani test:
7m of 25% pyrrhotite @ 262m depth
No gold...
Greenstone – Airborne EM Inversion (3D)

- EMVision® 3D inversion by Technoimaging (footprint)
- H3DInv by University of British Colombia (UBC - GIF-IRC)
Porphyry – Various Methods

- **Geology**
 - Porphyries form in various settings
 - Usually at convergent plate margins
 - Commonly hosted in volcanics or sediments
 - *Au in centre of porphyry system*

- **Petrophysics**
 - Magnetic, electrical & potassium contrasts
 - Alteration zonation
 - Response varies depending on host
 - Disseminated sulphides

- **Various geophysical methods**
 - **Acquisition:**
 - 1) Regional airborne mag & radiometrics
 - 2) Follow-up airborne EM
 - 3) IP/resistivity methods (100-200m dipoles)
 - **Processing:**
 - Channel amplitude maps
 - 1D/2D /3D transforms and inversions
Porphyry – Integrated Example

- **K-silicate core**
 - magnetic
 - resistive

- **Phyllic alteration**
 - resistive
 - chargeable

- **Propylitic alteration**
 - chargeable
 - magnetic

- **Outer propylitic alteration**
 - Potassium anomaly
Epithermal (HS) – CSAMT

- **Geology**
 - Diatreme dome complexes with associated volcanics
 - Pre, syn and post mineral diatremes
 - Pre-mineral domes can be unaltered and overlying mineralisation
 - Large advanced argillic alteration zones (100’s km²)
 - Topographic highs of silicic alteration
 - **Au in vuggy silica core**

- **Petrophysics**
 - Resistive, massive vuggy silica core
 - Magnetite depletion
 - Chargeable alteration halo

- **Resistivity methods**
 - Acquisition:
 - IP/res (100-200m dipoles)
 - CSAMT
 - Processing:
 - Amplitude maps, depth slices
 - 1D/2D inversions
Epithermal (HS) – CSAMT Example

- Veladero: ~ 12.0 Moz Au proven and probable (2009)

- Image of CSAMT resistivity
 - 100m depth slice, with alteration outline

- 400m line spacing

- Cross section through anomaly
Epithermal (HS) – CSAMT Example

- Vuggy Silica
- Quartz Alunite
- Argillic - Clays

Au 1g/t contour
Au 5g/t contour

Pit - western edge
7,400 ohm*m
7,200 ohm*m
high grade, middle of Amable Pit
20,000 ohm*m

"B"
"A"
Porphyry Filter

- Automatically detect and quantify porphyry magnetic signatures via user defined application of porphyry target model
- Research agreement between UWA-CET and Barrick signed in 2008 to sole-fund “Porphyry Texture Filter”
- Cu-Au rich porphyry focus
- Magnetic coverage available over most projects – capitalise on investment
- Rapid objective analysis of large datasets
- Discrimination within highly magnetic terrains and under cover
Research – Image Processing

Input RTP Grid
Radial Symmetry
Magnetic Contrast
Final Product

Centre of Symmetry
Seed Radius
Final Boundary
Statistical Summary

- 29 Pre-existing prospects
 - 21 Recognised
 - 8 failed to meet user defined criteria (size, contrast, not circular)
- 35 Centres located
 - 30 Boundaries
 - 9 Additional targets
Conclusions

- **Barrick Gold**
 - Leading gold producer, with largest reserves
 - 8 full time geophysicists, one part time. Average age 34, strong in geology, mostly have honours or equivalent
 - University, professional affiliate and research support
 - Preferred model type greenstone, epithermal, Carlin and porphyry Cu-Au

- **Carlin: Hardrock Seismic**
 - Seismic suits the carbonate stratigraphy, having low-angle structural control on architecture and good acoustic impedance contrasts between lithologies and deposition facies
 - Hardrock seismic requires high spatial resolution (10m receiver, 20m shot) and frequency and higher fold (120+)

- **Greenstone: Airborne EM**
 - Sediment hosted sulphide-rich end member is better suited to electromagnetic (EM) techniques
 - Conductive near-surface response usually identifies centre of the system
Conclusions (cont)

- **Porphyry Cu-Au: Integrated Methods**
 - Magnetics/radiometrics to map potassic alteration is well known
 - Potassic core can be either conductive in sulphide-rich systems, or resistive in sulphide-poor systems, depending on host
 - Outer phyllic/propylitic alteration is chargeable, magnetite destructive and is often resistive

- **High Sulphidation Epithermal: CSAMT**
 - Resistivity data can effectively map the typical alteration of advanced argillic with vuggy silica (resistive), advanced argillic with quartz alunite (moderate resistor), to argillic with intense clay (conductive, chargeable)
 - Magnetite depletion and chargeable alteration also system indicators

- **Research Image Processing: Porphyry Filter**
 - Developed an algorithm to detect near surface porphyry Cu-Au responses in magnetic data
 - The result was a fast, effective reconnaissance porphyry mapping tool for magnetic data. Can identify subtle response in presence of volcanics.