Certain information contained in this presentation, including any information as to our strategy, projects, plans or future financial or operating performance and other statements that express management’s expectations or estimates of future performance, constitute "forward-looking statements". All statements, other than statements of historical fact, are forward-looking statements. The words “believe”, “expect”, “will”, “anticipate”, “contemplate”, “target”, “plan”, “continue”, “budget”, “may”, “intend”, “estimate” and similar expressions identify forward-looking statements. Forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable by management, are inherently subject to significant business, economic and competitive uncertainties and contingencies. The Company cautions the reader that such forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause the actual financial results, performance or achievements of Barrick to be materially different from the Company's estimated future results, performance or achievements expressed or implied by those forward-looking statements and the forward-looking statements are not guarantees of future performance. These risks, uncertainties and other factors include, but are not limited to: the impact of global liquidity and credit availability on the timing of cash flows and the values of assets and liabilities based on projected future cash flows; changes in the worldwide price of gold, copper or certain other commodities (such as silver, fuel and electricity); fluctuations in currency markets; changes in U.S. dollar interest rates or gold lease rates; risks arising from holding derivative instruments; legislative, political or economic developments in the jurisdictions in which the Company carries on business; operating or technical difficulties in connection with mining or development activities; employee relations; availability and costs associated with mining inputs and labor; the speculative nature of exploration and development, including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves; changes in costs and estimates associated with our projects; adverse changes in our credit rating, level of indebtedness and liquidity, contests over title to properties, particularly title to undeveloped properties; the risks involved in the exploration, development and mining business. Certain of these factors are discussed in greater detail in the Company’s most recent Form 40-F/Annual Information Form on file with the U.S. Securities and Exchange Commission and Canadian provincial securities regulatory authorities.

The Company disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events or otherwise, except as required by applicable law.
Overview

- Petrophysics of Great Basin rocks
- Recent applications of geophysics in the Great Basin
- Future developments in geophysics and their impact in the Great Basin
- Conclusions
Petrophysics is a measure of the physical properties of rocks

Petrophysical generalizations for Great Basin rocks are:

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Magnetization</th>
<th>Density</th>
<th>Conductivity</th>
<th>Chargeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Plate</td>
<td>(L)</td>
<td>(M-H)</td>
<td>(M)</td>
<td>(L)</td>
</tr>
<tr>
<td>Upper Plate</td>
<td>(L)</td>
<td>(M)</td>
<td>(M)</td>
<td>(L)</td>
</tr>
<tr>
<td>Pen-Perm overlap</td>
<td>(L)</td>
<td>(M)</td>
<td>(M)</td>
<td>(L)</td>
</tr>
<tr>
<td>Intrusive stocks</td>
<td>(M - H)</td>
<td>(M)</td>
<td>(M)</td>
<td>(L)</td>
</tr>
<tr>
<td>Dykes related to stocks</td>
<td>(L-M)</td>
<td>(M)</td>
<td>(H) (clays)</td>
<td>(H) (clays)</td>
</tr>
<tr>
<td>Cover: Alluvial/Colluvial</td>
<td>(L)</td>
<td>(L)</td>
<td>(H)</td>
<td>(L)</td>
</tr>
<tr>
<td>Cover: Volcanic</td>
<td>(H)</td>
<td>(L)</td>
<td>(M)</td>
<td>(L)</td>
</tr>
</tbody>
</table>

\(H = \text{High}, \ M = \text{Moderate}, \ L = \text{Low}\)

- Real world petrophysics are **highly variable** due to overprinting structural, hydrothermal alteration and metamorphic events
- Cannot rely on petrophysical **generalizations**
 - Requires specific **petrophysical studies** for project area
Effective application of geophysics requires:
- specific *petrophysical studies* for project area
- understanding of *geologic controls on mineralization*

Recent examples:
- Magnetics, Goldstrike and Cortez
- Gravity, Stonehouse
- Hardrock Seismic, Cortez
- MT/CSAMT, Ruby Hill
- IP/Resistivity, Bald Mountain
- Remains the most effective reconnaissance mapping tool
 - Despite **limited developments** in acquisition technology
 - Lower cost, better processing tools, better geologic integration

- Stippled **high-low volcanic signature**
 - **Magnetite** in primary composition
 - Variable **remnant** and **normally** magnetized Basalt flows

- Intrusive stock **high**
 - **Magnetite** in primary composition
 - **Remnant** and **normally** magnetized

Also consider
- **high** from **Monoclinic Pyrrhotite** in magnetic skarn surrounding intrusion
- Gold Acres Stock: buried intrusion exposed only in Gold Acres Pit

- Quartz Monzonite is **weakly magnetic** (below 2.0 x 10^{-3} SI)

- Skarn surrounding stock is **moderate to highly magnetic** (<46.1 x 10^{-3} SI)

- Peak magnetic response is outside bounds of intrusion

- Consider skarn in interpretations!
Detailed Gravity

- Extensively applied in the Great Basin
 - Map **dense** Lower Plate vs. Upper Plate
 - Map **alteration and metamorphism** in uniform sediments
 - Map bedrock structure **beneath cover**

- **Stonehouse example**
 - Immediately north of Lone Tree mine
 - Wayne Zone is structurally controlled on high-angle (75° W) fault
 - Use gravity to map extension of Wayne Zone structure beneath I-80 highway

- **Significant cover thickness (>500ft)**
 - 1000ft gravity station spacing is sufficient resolution
Residual gravity maps density contrasts in upper 2000ft

Mapping bedrock horst beneath pediment
- 1500ft wide, 3 miles long

Gravity modeling to define geometry and quantify offset
- Simple 2-layer earth model
- Bedrock vs. cover
Detailed Gravity - Stonehouse

- Simple two-layer* 2D gravity model (Encom ModelVision)

*Tertiary Basalt layers of unknown thickness are not accounted for in modeling
Hardrock Seismic

- Softrock seismic - un lithified, sedimentary basin (Hydrocarbons)
- **Hardrock** seismic - lithified, crystalline rock (Ore deposits)

Hardrock Challenges
- Complex 3D geology (scattering)
- Higher intrinsic velocities
- Non-homogeneous near-surface

Variations for Hardrock
- High resolution: spatial and temporal
- High fold (spatial stacking) >120
- Specific processing considerations
 - Statics corrections for topography
 - Accurate velocity models for depth

Interpretation
- Integrate with drilling
- 2D structural interpretation
- Update geologic model
- Direct drill targets
Petrophysics considerations
– Seismic reflections from **acoustic impedance contrasts**: > lithologies > deposition facies > structure

Low-angle structural architecture (<45°)

Covered targets
– Alluvium
– Upper Plate

‘Oil-trap’ targets
– anticlines
– thrust stacking
– over-thickening
- Location of Gold Acres seismic line
Hardrock Seismic - Cortez

Upper Plate siliciclastics
Intrusive
Metamorphic halo
Lower Plate carbonates

Blue = drillholes

Depth conversion from downhole velocity work
MT/CSAMT Resistivity

- Resistivity and Electromagnetic applications increased through advancements in distributed array systems
 - e.g. Titan 24, MIMDAS

- Controlled source for improved resolution in upper 1000ft
 - Supplements data in the “dead band” of natural energy fields
 - Inherent technical issues with CSAMT surveying over cover
 - No bedrock information

- Petrophysics studies and base level geology imperative
 - Large resistivity variations between lithologies, metamorphism and alteration
 - Easy to make inaccurate interpretations
MT - Ruby Hill

- Unconstrained 2D inversion of MT profile
- E-W section, S of East Archimedes Pit. Pink is conductive
- Black: Modeled geology – MT maps structure very well
- Red: Anomalous gold – MT maps mineralization on gradients
Limited use in the Great Basin due to geological ‘noise’:
- Chargeable graphitic shales
- Remobilized carbon outbound of contact metamorphic aureole
- Diagenetic pyrite not associated with mineralization

Applied on case by case basis depending on geologic setting

Advanced applications of traditional IP techniques
- Distributed array systems
- 3D inversion
- Downhole IP experiments
Bald Mt example

- RBM dipole-dipole IP Survey

*Lee to resupply with elevation colour stretch for plan map – not hot/cold
Future: Great Basin geophysics

- Geophysics will play an increasing role in Great Basin exploration in the future

- Blind deposits
 - beneath alluvial or volcanic cover
 - No surface geochemical expression

- Following section describes developments expected in the next 5 to 10 years in:
 - Acquisition
 - Processing and inversion
 - Geological integration
Future: Acquisition

- Distributed array electrical methods
 - Multiple source-receiver combinations
 - Reduce non-uniqueness in inversions
 - Higher interpretability, more accurate

- 3D Hardrock Seismic
 - Better images complex 3D geology
 - More affordable in past decade
 - Wireless receivers with built in GPS locators for formidable terrain

- Airborne gravity
 - Noise levels **down** roughly an order of magnitude in the past decade
 - **Drape** over mountains in the Great Basin will be an issue for the large aircraft required
Future: Processing and Inversion

- 3D survey planning
 - 3D seismic / 3D MT station planning to best ‘illuminate’ target

- 3D inversion
 - Faster algorithms e.g. UBC MUMPS algorithm
 - More complex geophysical methods e.g. 3D EM inversion

- Example: 3D IP inversion
 - Gold Hill, Round Mt, NV
 - Quantec trial
 - Replicated 2D results
Future: Geological Integration

- Integration of geophysical, geochemical and geologic data
- Common earth models populated with multidisciplinary data

From J. Katseanes (Barrick)
Conclusions

- Variability in physical properties of Great Basin rocks warrants petrophysical studies in individual survey areas.

- Recent advances in geophysics have played a major role in more accurately identifying host rock lithologies, alteration and structure associated with gold mineralization.

- Presented examples where geophysics has assisted the exploration program.

- Future is in distributed array, 3D seismic and tools for better processing, inversion, and geologic integration.