Vision for Future Exploration: Geophysics and Gold

B. Bourne, ASEG-PESA Melbourne, 13th August, 2013
Outline

- Gold Trends
- Challenges
- Gold Model Types
 - Carlin
 - Greenstone
 - Porphyry
 - HS Epithermal
- Research
- Future
- Summary
Gold Discoveries since 1995

- Looking at +2Moz deposits:
 - 52 discoveries for 580 Moz (6 are >20 M oz)
 - 26 grassroots, 26 near-mine

- Only 10 in production
 - 4 grassroots, 6 brownfields

- We discover but
 - Few get to production
 - Takes longer

Barrick 2010
Discovery trends

- Discovery rates down
- Discovery cost up
- Effectiveness down

Increasing maturity
- Shrinking of search space

From McKeith 2009

Decreasing exploration effectiveness
World class discoveries required

- Long life, high margin, high throughput deposits
- 20% biggest deposits = 80% production or resources

Those are rare!
- Gold: 55 deposits >20 Moz
 - ~45 producing or mined
 - ~10 in the pipeline
Exploration Challenge Maturity

Outcrop Shallow basement
Basement depth <500m
Basement depth 500m to 1000m
Basement depth > 1000m

Source: Geoscience Australia Intierra
Targeting the Best Models

- **Preferred target types:**
 - High deposit abundance
 - Highest % of population >10 Moz deposits
 - Good economics and mineability

![Graph showing preferred target types](image)

Greenstone
- >10 Moz: 28%
- >3 Moz: 36%
- Hollinger, Homestake

Porphyry Cu-Au
- >10 Moz: 30%
- >3 Moz: 45%
- Yanacocha, Rosia Montana

HS Epithermal
- >10 Moz: 30%
- >3 Moz: 45%
- Round Mountain, Porgera

Epithermal LS
- >10 Moz: 4%
- >3 Moz: 10%
- Muruntau

CSH
- >10 Moz: 29%
- >3 Moz: 45%
- Goldstrike

Carlin
- >10 Moz: 45%
- >3 Moz: 10%
- La Ronde

Au-VMS
- >10 Moz: 10%
- >3 Moz: 0%
- La Ronde

- 468 deposits >3 Moz
Nevada Hot Spot

- +250 Moz in Carlin deposits in area 200 x 400km
- ~5% of world Au production
- Distributed along “Trends”

<table>
<thead>
<tr>
<th>Top 5</th>
<th>Moz Au</th>
<th>g/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldstrike</td>
<td>55</td>
<td>8.6</td>
</tr>
<tr>
<td>Getchell-TR</td>
<td>26</td>
<td>7.1</td>
</tr>
<tr>
<td>Gold Quarry</td>
<td>24</td>
<td>1.2</td>
</tr>
<tr>
<td>Twin Creeks</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Goldrush</td>
<td>14</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Carlin deposits
- > 10 Moz
- 5-10 Moz
- 1-5 Moz
- <1 Moz

Scale: 100 km
Mineralization characteristics

- Au with fine disseminated pyrite
 - Au-As in rims (*main ore stage*)
 - Later realgar, orpiment, stibnite (*late ore stage*)
 - Au-As-Tl-Sb-Hg association

- Forms as wallrock replacement or breccia matrix

Silicified silty micrite, Cortez Hills; 25 g/t Au

Photo courtesy of Jean Cline
Deposit characteristics

- Favorable rocks (sink for gold)
- Conduit structure (plumbing)
- Seal

Legend:
- Jasperoid
- Silicification
- Decalcification
- Breccia
- Ore
- No geophysical “silver bullet” for Carlin-style gold mineralization

- Petrophysical **GENERALIZATIONS** of typical Great Basin rocks:

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Physical Property</th>
<th>Magnetization</th>
<th>Density</th>
<th>Conductivity</th>
<th>Chargeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleozoic Lower Plate Carbonates</td>
<td></td>
<td>L</td>
<td>M-H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Paleozoic Upper Plate Siliciclastics</td>
<td></td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Pen-Perm overlap sediments</td>
<td></td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Mesozoic Intrusive stocks</td>
<td></td>
<td>M-H</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Tertiary/Quaternary Alluvium/Colluvium</td>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Tertiary/Quaternary Volcanics</td>
<td></td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
</tbody>
</table>

- Overprinting structural, alteration and metamorphic events inherently causes **highly variable** petrophysical properties
Carlin- Petrophysics

- Geophysical applications in the Great Basin require:
 - Specific **petrophysical studies**
 - understanding of **geologic controls on mineralization**

- Recent Great Basin examples:
 - Gravity: Project A ★
 - Hardrock Seismic: Cortez ★
 - IP/Resistivity: Bald Mountain ★

Image from M. Jackson, 2010
Detailed Gravity

- Gravity for Great Basin exploration
 - Map **denser** Lower Plate vs Upper Plate
 - Map **alteration and metamorphism**
 - Decalcification=low, Hornfelsing=high
 - Map bedrock structure **beneath cover**

- Project A example
 - Immediately north of mine
 - Ore is structurally controlled on high-angle (75° W) fault
 - Use gravity to map extension of mineralised structure

- Pediment cover greater than 150m
 - 300m gravity station spacing

Google Earth image over Project A
Residual gravity highlights density contrasts in upper 500m

- Defines bedrock horst beneath alluvial pediment
 - 1500ft wide, 3 miles long

- 2D gravity modeling to quantify geometry and offset
 - Simple 2-layer earth model
 - Bedrock (2.4 g/cc)
 - Alluvium (2.0 g/cc)
Detailed Gravity – Project A

- Simple two-layer* 2D gravity model (Encom ModelVision)

*Tertiary Basalt layers of unknown thickness are not accounted for in modeling
Carlin – Hardrock Seismic

- **Geology**
 - Carbonate stratigraphy
 - Low-angle architecture
 - Thrusting and stacking
 - *Au in antiform structure*

- **Petrophysics**
 - Density & velocity contrast between
 - lithologies
 - deposition facies
 - structure

- **Hardrock Seismic**
 - **Acquisition:**
 - High resolution & frequency
 - 10m receiver, 20m shot
 - At least 120 fold
 - 3D acquisition in 2011, 2012
 - **Processing:**
 - Statics corrections for topography
 - Huge velocity contrasts in near-surface
- Location of Gold Acres seismic line
Terra Resources

Hardrock Seismic - Cortez

- **Upper Plate siliciclastics**
- **Metamorphic halo**
- **Lower Plate carbonates**
- **Intrusive**

TARGET

- Good reflectors in Lower Plate
- Incoherent reflectors in intrusion
- First good reflector is coincident with the base of intrusion from drilling
- Interpret laccolithic shape to intrusion

Depth conversion from downhole velocity work

Blue = drillholes
Induced Polarization

- Pyrite and Arsenopyrite will have an IP response
-BUT so does geological ‘noise’:
 - Diagenetic pyrite that is not associated with mineralization
 - Graphitic ‘black’ shales
 - Remobilized carbon outbound of contact metamorphic aureole

- Use of IP in the Great Basin is limited and applied on case by case basis depending on geologic setting

- Innovative applications of traditional IP techniques
 - Distributed array systems
 - 3D inversion
 - Downhole IP experiments
 - AMIRA P1058 Spectral Induced Polarization for 3D Mineral Discrimination
IP - Bald Mt example

- RBM dipole-dipole IP Survey
Greenstones

- **Geology**
 - Greenstone stratigraphy (includes seds)
 - Sediment hosted sulphide-rich end member
 - Near volcanic sequence or porphyry
 - *Au associated with sulphides*

- **Petrophysics**
 - Resistivity contrasts
 - Disseminated sulphides
 - More resistive host
 - Density, magnetic contrasts (in strat.)

- **Airborne EM**
 - Acquisition:
 - High resolution (50/100m line spaced)
 - Target late time conductive responses
 - Processing:
 - Channel amplitude maps
 - 1D transforms and inversions routine

VTEM system
Helicopter time domain VTEM surveys

Late time channel data (8.9 ms) shown

Draped over greyscale magnetics (RTP 1VD)

Tusker 4.54 Moz @ 1.5 g/t Au (2009) – Sulphidised BIF

Killimani anomaly identified as another sulphide response
Porphyry – Various Methods

- Geology
 - Porphyries form in various settings
 - Usually at convergent plate margins
 - Commonly hosted in volcanics or sediments
 - **Au in centre of porphyry system**

- Petrophysics
 - Magnetic, electrical & potassium contrasts
 - Alteration zonation
 - Response varies depending on host
 - Disseminated sulphides

- Various geophysical methods
 - Acquisition:
 - 1) Regional airborne mag & radiometrics
 - 2) Follow-up airborne EM
 - 3) IP/resistivity methods (100-200m dipoles)
 - Processing:
 - Channel amplitude maps
 - 1D/2D/3D transforms and inversions

Volcanic arc (island/continental) porphyry Cu-Au
- Diorite-granodiorite (tonalite)
- Preserved (?) lithocap +/- gold mineralization
- Post-mineral diatreme breccia

Thompson (2004)

AEROTEM IV system
Porphyry – Geological Cross Section

Potassium Anomaly

Chargeable Anomaly

Resistivity Anomaly

Magnetic Anomaly

1km

- Outer Propylitic
- Propylitic

Unaltered post-mineral feldspar porphyry dykes

TPD-001

C & Cu in soil ~ 400 – 1060 ppm

increasing fracturing & alt intensity

Unaltered
Porphyry – Integrated Example

- **K-silicate core**
 - magnetic
 - resistive

- **Phyllic alteration**
 - resistive
 - chargeable

- **Propylitic alteration**
 - chargeable
 - magnetic

- **Outer propylitic alteration**
 - Potassium anomaly
Mineralized Porphyries in the Reko Diq Cluster

- Porphyry with resource
- Mineralized Porphyry with drilling

Western Porphyries

H36
H9
H2
H13
H8
H27
H7-H58
H35
H14
H15
H79

Bulet
Pashir

2 km

NE Kohi Dalil
Kahi Dalil
Parra Koh
Ground EM on Tanjeel (H4)
Channel 15 (990 usec)

144m @ 0.49%Cu
24m @ 0.4%Cu
15m @ 0.66%Cu
15m @ 1.08%Cu
27m @ 0.88%Cu

1km
Ground EM on Tanjeel (H4) Channel 15 with Cu Grade

144m @ 0.49%Cu
24m @ 0.4%Cu
15m @ 0.66%Cu
15m @ 1.08%Cu
27m @ 0.88%Cu
Porphyry Filter

- Automatically detect and quantify porphyry magnetic signatures via user defined application of porphyry target model
- Research agreement between UWA-CET and Barrick signed in 2008 to sole-fund “Porphyry Texture Filter”
- Cu-Au rich porphyry focus
- Magnetic coverage available over most projects – capitalise on investment
- Rapid objective analysis of large datasets
- Discrimination within highly magnetic terrains and under cover
Statistical Summary

- 29 Pre-existing prospects
 - 21 Recognised
 - 8 failed to meet user defined criteria (size, contrast, not circular)

- 35 Centres located
 - 30 Boundaries
 - 9 Additional targets
Epithermal (HS) – CSAMT

- **Geology**
 - Diatreme dome complexes with associated volcanics
 - Pre, syn and post mineral diatremes
 - Pre-mineral domes can be unaltered and overlying
 - Large advanced argillic alteration zones (100’s km²)
 - Topographic highs of silicic alteration
 - *Au in vuggy silica core*

- **Petrophysics**
 - Resistive, massive vuggy silica core
 - Magnetite depletion
 - Chargeable alteration halo

- **Resistivity methods**
 - Acquisition:
 - IP/res (100-200m dipoles)
 - CSAMT
 - Processing:
 - Amplitude maps, depth slices
 - 1D/2D inversions
Epithermal (HS) – CSAMT Example

- Veladero: ~12.0 Moz Au proven and probable (2009)
 - Image of CSAMT resistivity
 - 100m depth slice, with alteration outline
 - 400m line spacing
 - Cross section through anomaly
Epithermal (HS) – CSAMT Example

Vuggy Silica
Quartz Alunite
Argillic - Clays

Au 1g/t contour
Au 5g/t contour
- Near-mine success for deep discoveries
- Need to extend success to all our frontiers
 - At depth, under cover, in remote areas

Carlin discoveries in Nevada (near-mine)
Where to Look - Targeting

- Understand fundamental controls on mineral systems, deposit formation and distribution through time

- Collaborative research to improve understanding of mega-scale terrains and giant mineral systems footprints combined with Government precompetitive raw data

- Direct Targeting is company responsibility not broad collaborative research – Company competitive advantage.
Vision for Exploration - Geophysics

- Petrophysical analysis performed on all drill core or routinely determined down hole.

- All deep exploration boreholes with strategic value preserved (cased) and exploited using off hole geophysical techniques (e.g., VSP, gravity, magnetics).

- Routine use of high resolution 3D seismic for mineral exploration - basement mapping.

- Routine use of multi-component sensor technology for airborne acquisition (e.g., EM, magnetics, gravity).

- “Array” style acquisition for ground geophysical surveys. Multiple sensors deployed and acquire data simultaneously.

- Routine 3D inversion of all geophysical data with joint inversion (geology or other geophysical data) common practice.
Advances: Acquisition

- Distributed array electrical methods
 - Multiple source-receiver combinations
 - Reduce non-uniqueness in inversions
 - Higher interpretability, more accurate

- 3D Hardrock Seismic
 - 3D seismic best for complex 3D geology
 - A lot more affordable in past decade
 - Wireless receivers + built-in GPS receivers for formidable terrain

- Airborne gravity
 - Noise levels down
 - Acquire data in rugged areas...or over competitor ground ;)
 - Helicopter platform now available
Advances: Processing and Inversion

- Able to use office PC’s, instead of blades/cluster.
 - Processing with 64-bit machines, +++Gb RAM

- Forward modeling for 3D survey planning
 - 3D seismic / 3D MT station planning to best ‘illuminate’ target

- 3D inversion
 - Faster algorithms, continuous updates through research
 - More complex meshing for topography etc

- Example: Round Mt, NV
- 3D survey acquisition
- Gold Hill 3D IP inversion
- 3D replicated 2D results
Advances: 3D Interpretation

- Integration of geophysical, geochemical and geologic data
- Common earth models populated with multidisciplinary data

3D model for Dee property

From J. Katseanes (Barrick)
Conclusions

- **Barrick Gold**
 - Leading gold producer, with largest reserves
 - Support Universities, professional affiliate groups and research
 - Preferred model type greenstone, epithermal, Carlin and porphyry Cu-Au

- **Carlin: Hardrock Seismic**
 - Seismic suits the carbonate stratigraphy, having low-angle structural control on architecture and good acoustic impedance contrasts between lithologies and deposition facies
 - Hardrock seismic requires high spatial resolution (10m receiver, 20m shot) and frequency and higher fold (120+)

- **Greenstone: Airborne EM**
 - Sediment hosted sulphide-rich end member is better suited to electromagnetic (EM) techniques
 - Conductive near-surface response usually identifies centre of the system
Conclusions (cont)

- **Porphyry Cu-Au: Integrated Methods**
 - Magnetics/ radiometrics to map potassic alteration is well known
 - Potassic core can be either conductive in sulphide-rich systems, or resistive in sulphide-poor systems, depending on host
 - Outer phyllic/ propylitic alteration is chargeable, magnetite destructive and is often resistive

- **High Sulphidation Epithermal: CSAMT**
 - Resistivity data can effectively map the typical alteration of advanced argillic with vuggy silica (resistive), advanced argillic with quartz alunite (moderate resistor), to argillic with intense clay (conductive, chargeable)
 - Magnetite depletion and chargeable alteration also system indicators
Summary

- Demand for resources will increase
- Maturity in shallow search space, forcing us deeper
- Discovery success rates expected to remain low
- Risk – increasingly important in choice of where to explore, technical risk will eventually increase
- Tools need further development and in some cases step change to improve exploration success rates
- Integrated exploration will be the key in the next round of discoveries – geophysics will be key
- Geoscientists – remember fundamental geology and boots on the ground
Vision for Future Exploration: Geophysics and Gold

B. Bourne, ASEG-PESA Melbourne, 13th August, 2013